Polarisationskontrast in der (Stereo-)Mikroskopie

Im Alltag sind wir meist vielen Lichtquellen gleichzeitig und Licht verschiedenster Polarisationen ausgesetzt. Die Schwingungen der elektromagnetischen Lichtwellen besitzen eine Ausrichtung, senkrecht zur Ausbreitungsrichtung des Lichts. Bei ‘unpolarisiertem’ Licht überlagern sich viele verschiedene Ausrichtungen bzw. Polarisationsebenen (Siehe Abb 1). Polarisiertes Licht zeichnet sich dadurch aus, dass es nur aus Lichtwellen mit einer einzelnen Ausrichtung senkrecht  zur Ausbreitungsrichtung besteht.

Abbildung 1 - von wikipedia.org, wire-grid polarizer by Bob Mellish (CC BY-SA 3.0)

Abbildung 1 – wire-grid polarizer von Bob Mellish (CC BY-SA 3.0)

 

Um polarisiertes Licht zu erzeugen lässt sich unpolarisiertes Licht durch einen (Gitter-)Polarisationsfilter mit bestimmter Ausrichtung so filtern, dass nur Lichtwellen mit der Ausrichtung parallel zu der des Filters durchgelassen werden – Lichtwellen deren Ausrichtung 90° zur Ausrichtung des Filters gedreht sind, werden komplett ausgelöscht, andere Winkel dazwischen sorgen für eine Abschwächung, Siehe Abbildung 2. Diese zeigt die Drehung eines Linearen Polarisationsfilters vor einem LCD-Bildschirm (der immer polarisiertes Licht aussendet) um 90°.

Abbildung 2

Abbildung 2 – Drehung zweier Gitter-Polfilter zueinander

 

Dies verdeutlicht, dass selbst ein einzelner Polarisationsfilter immer auch einen gewissen Lichtverlust bedeutet, aber zwei Polarisationsfilter hintereinander platziert, 90° zueinander verdreht blockieren sämtliche Lichtwellen komplett. Auch hier sorgen Winkel dazwischen für eine Abschwächung  der Lichtintensität. Richtig eingesetzt sorgt genau dieser Effekt für nützliche und spannende Anwendungen.

Bei doppelbrechenden (optisch anisotropen) Materialien offenbaren Polarisationsfilter zum Beispiel die sogenannte Spannungsoptik im Material und können zu farbenprächtigen Effekten führen, wie beispielsweise in diesem Video zu sehen. Dieser Effekt kann aber nicht nur beeindruckend aussehen, er stellt auch die Basis vieler Untersuchungen von Kristallen und Gesteins-Dünnschliffen dar.

Abbildung 3 - Spannungsdoppelbrechung an Anspritzstelle eines Spritzgussteils (von Rainer Ziel)

Abbildung 3 – Spannungsdoppelbrechung an Anspritzstelle eines Spritzgussteils (von Rainer Ziel)

Oft wird bei optischen System unabhängig vom Zweck der Anwendung der erste Polarisationsfilter den das Licht passiert als Polarisator bezeichnet, der zweite Filter hingegen als Analysator, obwohl es sich beide Male gleichermaßen um einen linearen Gitter-Polarisatonsfilter handelt. In der Mikroskopie ist dies so üblich, in der Fotografie hingegen werden oft teurere zirkular polarisierte Filter eingesetzt, diese bestehen aus einem linearen Polfilter und einer Verzögerungsplatte dahinter. Der Grund dafür ist, dass lineare Polarisation bei Spiegelreflexkameras (der verbaute Spiegel polarisiert einfallendes Licht) die automatische Messung der Belichtungszeit verfälschen kann. Man möchte sich jedoch zunutze machen, dass fast jede glatte spiegelnde Oberfläche reflexiertes Licht polarisiert. Deshalb reicht bereits ein einzelner drehbarer Polarisationsfilter um Reflexionen auf Fensterscheiben und anderen Gegenständen in einer Fotografie fast ganz zu beseitigen.

In der Mikroskopie wird dieser Effekt vor allem eingesetzt um metallische Oberflächen gleichmäßiger und heller Beleuchten zu können, ohne dass Spiegelungen andere feine Strukturen überdecken (siehe Abbildung 4 und 5). Damit eignet sich der Einsatz besonders für die Restaurierung von Skulpturen und Gemälden ebenso wie zur Qualitätssicherung bei metallischen und spiegelnden Oberflächen. In den beiden folgenden Beispielaufnahmen können Sie selbst direkt den Unterschied von normaler Beleuchtung zu Polarisationskontrast vergleichen; zum einen an einer vergoldeten Skulptur, zum anderen an einem Metallkontakt auf einer Platine.

 

 

 

Bereits bei frei beweglichen Lichtquellen lässt sich dieser Effekt mit zwei einfachen Gitter-Polarisationsfiltern ausnutzen; für eine Anpassung und Regulierbarkeit des Effekts muss aber zumindest einer der beiden Filter drehbar sein und sobald mehrere Lichtquellen im Spiel sind, wird es schwieriger die Wirkung der Polarisationsfilter genau vorherzusagen. Um dieses Problem zu vermeiden, versucht man meist, sämtliches Licht das auf die Probe trifft möglichst gleichartig zu polarisieren und verhindert jeglichen weiteren Lichteinfall – dann kann man mit der richtigen Stellung des drehbaren Polfilters einen Großteil der Reflexionen der Lichtquelle beseitigen.

Abbildung 6 zeigt, wie auch die vorherigen Beispiele, eine Mischbeleuchtung aus polarisiertem und unpolarisiertem Licht, dennoch ist deutlich zu erkennen, wie sich mit Polfilter Beschädigungen der Kontaktfläche hell auf dunklem Hintergrund deutlich abheben. Bei der Aufnahme ohne Polfilter machen es die Reflexionen auf der Metalloberfläche beinahe unmöglich die Beschädigungen präzise zu erkennen.

 

 

Nachfolgend einige Beispiele für Polarisationsfilter aus unserem Onlineshop:

Diesen Beitrag kommentieren.